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Abstract

Algorithms for performing feature extraction and normalization on high-density oligonucleotide gene

expression arrays, have not been fully explored, and the impact these algorithms have on the downstream analysis is not
well understood. Advances in such low-level analysis methods are essential to increase the sensitivity and specificity of
detecting whether genes are present and/or differentially expressed. We have developed and implemented a number of
algorithms for the analysis of expression array data in a software application, the DNA-Chip Analyzer (dChip). In this
report, we describe the algorithms for feature extraction and normalization, and present validation data and comparison
results with some of the algorithms currently in use. J. Cell. Biochem. Suppl. 37: 120-125, 2001. © 2002 Wiley-Liss, Inc.
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Monitoring gene expression using high-
density microarrays is a key technology in
the study of cell functions and the associated
biochemical pathways, candidate gene identi-
fication, cellular response to drug compounds,
and classification of disease states [Wodicka,
1997; Eisen, 1998; Zhu, 1998; Alon, 1999;
Golub, 1999; Tamayo, 1999]. Published me-
thods have largely focused on enhancing
the technology itself and the correspond-
ing experimental protocols [Schena, 1995;
Lockhart, 1996; Shalon, 1996; Mahadevappa
and Wodicka, 1999], and on developing higher-
level analysis methods such as clustering and
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classification. Chen (1997) detailed algorithms
for image segmentation and confidence inter-
vals for expression ratios for cDNA micro-
array data. For oligonucleotide array data, a
thorough investigation of such low-level ana-
lysis is lacking.

We present novel algorithms for two critical
steps in the analysis of oligonucleotide expres-
sion arrays such as the Affymetrix GeneChip®
probe arrays [Lockhart, 1996; Lipshutz et al.,
1999]. Specifically, we describe our methods
for segmenting array images and computing
feature intensities, and for normalizing two or
more arrays. It is well known that the compar-
ison of gene expression results across experi-
ments relies crucially on having an effective
normalization scheme. Validation data for each
of the algorithms are presented and the algo-
rithms are compared against alternative algo-
rithms currently in use. It is found that the new
algorithms offer substantial gains in reduc-
ing replication variability and in enhancing
estimation of expression ratios. Finally, we
describe our software, the DNA-Chip Analyzer,
for the analysis of oligonucleotide expression
array data.
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RESULTS
Feature Extraction

The feature extraction process involves defin-
ing a grid that identifies each of the features
on an array, and then computing an intensity
value for each feature. The oligonucleotide
array image contains easily recognizable align-
ment features at each corner (Fig. 1/Image 1).
Since the physical dimension of each feature is
known, once the positions of the alignment
features are determined, a simple bilinear tran-
sformation is used to map the positions of each
feature in the array. This defines the basic grid
that segments the raw image into individual
features. To compute the intensity value for a
feature, current methods [Lockhart, 1996] take
the 75th percentile (TP75) of the pixel intensi-
ties for the feature after removing the boundary
pixels. In Figure 1 (Image 2), the intensity of a
perfect match (PM) feature is seen to be much
higher than the corresponding mismatch (MM)
feature. Because of blurring, the pixels near the
PM/MM border are distorted in their value,
resulting in an upward bias when the TP75
algorithm is used to compute the MM intensity.
Another example given in Figure 1 (Image 3)

Fig. 1. Image 1 represents a feature-level view, generated by
dChip, of the upper left corner of a high-density Affymetrix
Hu6800 probe array. The checker-board pattern generated by
the alignment features is easily detected. Image 2 depicts a PM
(top of image) and MM (bottom of image) feature where the
bright intensities are seen to blur the PM/MM boundary,
resulting in an upward bias when the TP75 algorithm is used
to compute the MM intensity (198 vs. the APS computed value
of 154). The outer box in image 3 is part of the basic grid that
defines the boundary for each feature. It is clear the basic grid is
not properly centered over this feature. The inner box of image 3
is the region selected by the APS algorithm.

shows how a misalignment of the basic grid
results in a failure to extract the central part of
the true feature. To address these problems, we
have implemented an adaptive pixel selection
algorithm (APS). The first step is masking
pixels with extreme intensities (i.e., removal of
pixels more than 3 standard deviations from the
mean pixel value within a feature). Then, the
edge whose removal results in the greatest
reduction in the coefficient of variation (CV) of
the remaining pixels, is removed, if the reduc-
tion is judged to be statistically significant. This
is repeated until no further significant reduc-
tion in the CV can be achieved or until the
feature size has been reduced to a predefined
minimum (by default, 4 x 4 pixels). In addition,
we constrain the pixel selection process by forc-
ing adjacent subregions selected by this pro-
cess (corresponding to adjacent features) to be
separated by at least two pixels. This procedure
tends to select the most homogenous group of
pixels whose mean value is used to represent the
intensity for the given feature.

The APS algorithm was compared to the TP75
algorithm by examining twelve replicate oligo-
nucleotide arrays. These replicate data were
generated by hybridizing the same cRNA hy-
bridization cocktail onto six high-density Affy-
metrix Hu6800 probe arrays and six “A” probe
arrays from the low-density Affymetrix Hu6800
four-chip set. The twelve arrays were normalized
using the IDS/GCVSS normalization algorithm
described below. It is reasonable to expect, after
normalization, the intensities for any given
feature across the twelve replicates to be roughly
equal, since the same sample was hybridized
onto each array. For each feature across the
twelve replicate arrays, we computed the fea-
ture-intensity standard deviations (SD) after
using the TP75 and the APS algorithms to
compute the feature intensities. A good feature
extraction algorithm should lead to a small SD
among the replicates. Analyzing the twelve
replicate probe arrays, we found that 63% of
the APS feature-intensity SDs were significantly
smaller than the corresponding TP75 feature-
intensity SDs, and that in these cases, the mean
TP75-computed SD/APS-computed SD ratio was
1.53. On the other hand, the mean ratio between
the APS-computed SDs and the TP75-computed
SDs was only 1.31, when the APS-computed SD
was larger than the TP75-computed SD. Thus
the APS algorithm leads to a 17% reduction in
the intensity standard deviation across replicate
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arrays, when compared to the TP75 algorithm.
Given that these feature intensity calculations
form the basis for all future analyses, any
method that significantly reduces the measure-
ment error will serve to increase the sensitivity
and specificity of these types of experiments.

Normalization

Normalizing multiple probe arrays to allow
direct array-to-array comparisons presents one
of the greatest challenges in expression array
data analysis. Current methods include (1)
linear normalization and its extension by non-
linear regression and (2) methods based on
housekeeping genes or staggered spike-in con-
trols. Linear normalization, the most popular
normalization method currently in use, assumes
the intensities between two or more arrays are
related as a straight line with a zero y-intercept.
It leads to multiplication by a scaling factor
(slope of the line) to make the mean of the ex-
periment chip, the same as that of the baseline
chip. Although simple and robust, this method
has the drawback that it cannot adjust for non-
linear relations. Figure 2 illustrates a situation
where the slope in thelow intensity region (of the
scatter plot of PM/MM differences between two
arrays) is substantially different from the slope
in the high intensity region. In examining many
arrays, we have found that a 10-50% difference
in slope values is quite common. A natural modi-
fication of the linear method is to fit a nonlinear
regression of the baseline array values on the
experiment array values (Fig. 2). An implemen-
tation of such a procedure using smoothing spli-
nes with generalized cross-validation (GCVSS)
[Wahba, 1990] was described in Schadt [1999].
We will see, however, that such a procedure is
inadequate if the expression profiles of the two
arrays are very different.

It has also been suggested [Ermolaeva, 1998]
that normalization between arrays can be based
on a set of “housekeeping” genes. However, in
profiling human and murine tissue samples, we
have found many of the genes currently used
as housekeeping genes (e.g., B actin, glyceral-
dehyde-3-phosphate dehydrogenase, transfer-
rin receptor, signal transducer, and activator
of transcription 1, among others) to have ran-
ges of differential expression similar to other
genes whose differential expression patterns
are deemed biologically relevant to the system
under study. We have also investigated estab-
lishing normalization relationships using con-
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Fig. 2. Panel 1 illustrates the distribution differences that can
exist between the low and high feature intensities. The PM/MM
differences from two murine Affymetrix Mu6500SubA probe
array experiments are plotted. The green line in Panel 1 is the
line generated by the LR normalization method, the red curve is
generated by the GCVSS method, and the orange and blue lines
are generated by applying the LR method to low and high
differences, respectively (the low/high cutoff was determined
empirically from the GCVSS curve, and was taken to be
approximately 20). The slope of the green line is 1.47, while
the slope of the orange line is only 1.04 (a 30% reduction).
The GCVSS line matches the orange line at the low end and the
blue and green lines at the high end, although it is clear the data
between the two experiments are not really linearly related
(the R for the green line is only 53%; after normalization using
the IDS/GCVSS technique the R? jumped to 78%). Panel 2
shows the same data presented in Panel 1. The black points
represent the differences chosen by the IDS technique and the
red line is the GCVSS fit of the invariant differences between the
baseline and experiment arrays.

trol cRNAs for bacterial and phage genes (e.g.,
BioB, BioC, BioD, and cre), which are consis-
tently added to hybridization mixtures at
known concentrations. However, these controls
are often prepared in bulk and completely
independently of the sample being profiled,
and so, the normalization relation between the
controls on different arrays typically does not
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reflect the true normalization relation for the
biologically relevant genes of interest.

To address these problems, we have developed
an invariant difference selection algorithm
(IDS) that chooses a subset of PM/MM intensity
differences to serve as the basis for fitting a
normalization relation. A set of probes are said to
be invariant if the ordering of these probes
according to the PM/MM differences in the
experiment array, is the same as that in the
baseline array. Intuitively, if a gene is truly
differentially expressed, then the PM/MM dif-
ferences for this gene are more likely to have
different ranks relative to the other probes, and
hence they are not likely to be included in a large
invariant set. Although the maximal invariant
set can be computed using a dynamic program-
ming algorithm (not presented), the resulting
set is typically too small to form a reliable nor-
malization curve. Our IDS algorithm finds an
approximately invariant set of differences that is
not necessary maximal, but is large enough for
reliable fitting of the normalization relation. The
IDS algorithm uses the following expressions to
determine the approximately invariant set:

[L(B; + E;) + H(2N — B; — E;)]
2N

_ 2|B; - E;

- (Bi+E)

Ri =

D;

where L and H are the rank difference thresh-
olds for the low and high ends of the difference
intensity range, B; and E; are the ranks for the
ith difference of the baseline and experiment
arrays, and N is the total number of differences
that were ordered in the current iteration of
the algorithm. R; defines the threshold for

difference intensity i by linearly interpolating
the threshold between a low difference intensity
threshold, given by L, and a high difference
intensity threshold, given by H. This interpola-
tion is needed because there are many more
points at low intensities than at high intensi-
ties, so we can enforce a more strict threshold
policy at the low end, but must relax this
constraint at the high end to ensure enough
points are obtained in this range to reliably
establish the normalization relation. D; is the
rank difference test statistic used to deter-
mine if the ith difference should be included in
the invariant set, for the current iteration of
the algorithm. The ith difference is considered
approximately invariant if D; < R; This selec-
tion process then repeats, taking the current set
of approximately invariant differences as input,
until all differences meet the threshold criteria.
Once the approximately invariant set of dif-
ferences has been selected, the normalization
curve is constructed by applying the GCVSS
technique to the invariant set (Fig. 2).

In comparing our IDS/GCVSS normalization
technique to the linear regression (LR) and
GCVSS methods, we established that one nor-
malization method worked better than ano-
ther if (1) the method minimized the PM/MM
intensity difference variances across a series of
replicate arrays and (2) the method preserved
expression ratios in simulated data. The first
criterion ensures that genes known to have
identical expression levels will have observed
levels as close to identical as possible. The
second criterion ensures that criterion 1 is not
achieved at the expense of destroying the
very biological variation the technology aims
to detect. Table I presents the results of

TABLE 1. Results of Comparing Average Difference Intensities Across a
Series of 12 Replicate Probe Arrays Using No Normalization (UN), Linear
Normalization (LR), Smoothing Spline Normalization (GCVSS), and the
Invariant Difference Selection/Smoothing Spline (IDS) Methods

> Relation UN LR GCVSS IDS
UN N/A (0.96, 1.2) (0.85, 1.7) (0.74, 1.8)
LR (0.04, 1.0) N/A (0.76, 1.4) (0.65, 1.5)
GCVSS (0.15, 1.3) 0.24, 1.2) N/A (0.46, 1.4)
DS (0.26, 1.2) (0.35, 1.3) (0.54, 1.5) N/A

The first number in each value pair of the table represents the percentage of standard deviations,
computed across the 12 replicates for each of the genes that were larger when the normalization
technique listed in the leftmost column was compared against the normalization technique listed along
the top row. For instance, in cell (LR, IDS) the value pair (0.65, 1.5) indicates that 65% of the difference
standard deviations were larger when LR normalization was used compared to the difference standard
deviations when the IDS method was used, and of those that were larger, the median LR/IDS ratio of
standard deviations was 1.5, i.e., for 65% of the genes, half of those had an LR standard deviation that was
more than 1.5 times larger than the corresponding IDS standard deviations
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TABLE II. Results From Two Sets of Simulated Expression-Ratio Data

> Relation LR.1/LR.2 GCVSS.1/GCVSS.2 IDS.1/IDS.2
LR.1/LR.2 N/A (0.08, 1.2)/(0.15, 1.3) (0.94,9.3)/(0.61, 2.1)
GCVSS.1/GCVSS.2 (0.92, 3.2)/(0.85, 3.2) N/A (0.99, 16.5)/(0.95, 3.9)
IDS.1/IDS.2 (0.06, 1.4)/(0.39, 1.4) (0.01, 1.1)/0.05, 1.3) N/A

In the first set, 300 genes that were consistently detected as present across the 6 low-density replicate
probe arrays and 600 from the high-density replicate probe arrays were randomly selected; 6 sets
containing 50 genes each for the low-density arrays and 100 genes each for the high-density arrays were
then generated by randomly selecting, without replacement, from the sets of 300 and 600 randomly
selected genes. The PM/MM differences comprising each of the genes in each of the sets were then
multiplied by 2.0, 0.5, 4.0, 0.25, 6.0, and 0.17, respectively, to simulate fold changes between samples. The
12 original replicate probe arrays as well as the 12 modified replicate probe arrays were then normalized
using the normalization techniques listed in Table I. The same procedure was applied to the second set,
except that 320 genes from the low density arrays and 640 genes from the high-density arrays were
randomly selected, and then 16 sets of 20 genes/40 genes each were formed and the corresponding
difference intensities were multiplied by 2.0, 0.5, 2.5, 0.4, 3.0, 0.33, 3.75, 0.27, 4.0, 0.25, 5.0, 0.20, 6.0, 0.17,
7.0, and 0.14, respectively, yielding a very diverse differential expression pattern in which as many as
18% of the genes on the arrays were forced to be differentially expressed. The standard deviations of the
differences between the true fold change and the observed fold change after normalization were computed
for each of the modified genes. The first value in each value pair represents the percentage of standard
deviations that were larger when the normalization technique listed in the leftmost column was compar-
ed against the normalization technique listed along the top row. For instance, the first value pair (0.94,
9.3) in cell (LR.1/LR.2, IDS.1/IDS.2) indicates that for the first set of data, 94% of the LR.1 computed
standard deviations were larger than the IDS.1 computed standard deviations, and that of those that
were larger, the median LR.1/IDS.1 ratio of standard deviations was 9.3, i.e., half of the time, the LR. 1
standard deviation is more than 9.3 times larger than the IDS.1 standard deviation.

validating the IDS/GCVSS method against the
GCVSS method and the popular LR method.
The validation was carried out on the same set
of 12 replicate probe arrays discussed above.
These results indicate that the GCVSS and IDS/
GCVSS approaches are reasonably similar and
do a better job making the average of the PM/
MM differences for a particular gene, i.e., the
average difference intensities, across these re-

plicate arrays more consistent than doing no-
thing at all or than using the LR method.
However, it becomes clear in Table II that
the GCVSS technique makes the average dif-
ference intensities more consistent by destroy-
ing the very biological variation the technology
aims to detect, i.e., the GCVSS technique is
too sensitive to the relatively small number
of genes that change. On the other hand, the

Fig. 3.
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on the data can be performed, such as hierarchical clustering

interface. The left pane demonstrates the use of a Microsoft
Explorer-like tree control to organize arrays. Once the arrays
have been processed and grouped, higher-level statistical tests

and sample comparisons. Data used in the figure is courtesy of
Andrea Richardson and Dirk Iglehart.
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IDS/GCVSS technique continues to perform
better than the other techniques, by not only
minimizing the average difference intensity
variation across replicates, but also minimizing
the deviation from the true fold change valuesin
the simulated data.

DISCUSSION

We have presented algorithms for feature
extraction and normalization and demonstrat-
ed that these algorithms lead to improved
computation of feature intensities and expres-
sion ratios. Because many important decisions
on whether a gene should be pursued as a
candidate for a particular biological system
under study are directly based on the expression
ratios as well as on the differential expression
calls made by software such as the Affymetrix
GeneChip software, algorithms that provide
for more accurate estimates of these derived
statistics will be of great value to users of this
technology.

We have implemented the algorithms des-
cribed in this article in our software appli-
cation, the DNA-Chip Analyzer (dChip). In
addition to the implementations of the algo-
rithms described here, dChip also performs
image gradient and artifacts correction, model-
based expression index calculation, array and
probe outlier detection [Wong and Li 2001].
dChip has a user interface that allows arrays
and experiments to be logically grouped, and
provides higher level group comparison func-
tions and hierarchical clustering (Fig. 3). The
software is available at www.dchip.org
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